NASA has something to tell us… [Update]
NASA has something to say. It’s going to tell us at a conference on Thursday 2nd December and until then all the details have been embargoed. Oh and it’s to do with an “astrobiology Discovery” or from the horses mouth; “To discuss an astrobiology finding that will impact the search for evidence of extraterrestrial life.” Which I chose to take as:
“We found this thing on mars. Turns out it was pandoras box and a whole mess of alien sh*t spilled out. Help.”
Now if you are a more rational person you may want to wait ’til Thursday to agree/disagree with me. Or not. To the FUTURE!
[Source]
*The image may or may not represent any alien, whether it be real or fictional. Or not.
[UPDATE]
Turns out that it wasn’t so much to do with alien life as it was about; “The definition of life has just expanded,” Now though this is a bit of a letdown as I was expecting Avatar style aliens, it is nonetheless and important find. In other words any planet that may have seemed completely inhospitable before may now just be the perfect place for some little green men. Or blue men.
Click below for the full press release.
RELEASE : 10-320
NASA-Funded Research Discovers Life Built With Toxic Chemical
WASHINGTON — NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth.
Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. The microorganism substitutes arsenic for phosphorus in its cell components.
“The definition of life has just expanded,” said Ed Weiler, NASA’s associate administrator for the Science Mission Directorate at the agency’s Headquarters in Washington. “As we pursue our efforts to seek signs of life in the solar system, we have to think more broadly, more diversely and consider life as we do not know it.”
This finding of an alternative biochemistry makeup will alter biology textbooks and expand the scope of the search for life beyond Earth. The research is published in this week’s edition of Science Express.
Carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are the six basic building blocks of all known forms of life on Earth. Phosphorus is part of the chemical backbone of DNA and RNA, the structures that carry genetic instructions for life, and is considered an essential element for all living cells.
Phosphorus is a central component of the energy-carrying molecule in all cells (adenosine triphosphate) and also the phospholipids that form all cell membranes. Arsenic, which is chemically similar to phosphorus, is poisonous for most life on Earth. Arsenic disrupts metabolic pathways because chemically it behaves similarly to phosphate.
“We know that some microbes can breathe arsenic, but what we’ve found is a microbe doing something new — building parts of itself out of arsenic,” said Felisa Wolfe-Simon, a NASA astrobiology research fellow in residence at the U.S. Geological Survey in Menlo Park, Calif., and the research team’s lead scientist. “If something here on Earth can do something so unexpected, what else can life do that we haven’t seen yet?”
The newly discovered microbe, strain GFAJ-1, is a member of a common group of bacteria, the Gammaproteobacteria. In the laboratory, the researchers successfully grew microbes from the lake on a diet that was very lean on phosphorus, but included generous helpings of arsenic. When researchers removed the phosphorus and replaced it with arsenic the microbes continued to grow. Subsequent analyses indicated that the arsenic was being used to produce the building blocks of new GFAJ-1 cells.
The key issue the researchers investigated was when the microbe was grown on arsenic did the arsenic actually became incorporated into the organisms’ vital biochemical machinery, such as DNA, proteins and the cell membranes. A variety of sophisticated laboratory techniques were used to determine where the arsenic was incorporated.
The team chose to explore Mono Lake because of its unusual chemistry, especially its high salinity, high alkalinity, and high levels of arsenic. This chemistry is in part a result of Mono Lake’s isolation from its sources of fresh water for 50 years.
The results of this study will inform ongoing research in many areas, including the study of Earth’s evolution, organic chemistry, biogeochemical cycles, disease mitigation and Earth system research. These findings also will open up new frontiers in microbiology and other areas of research.
“The idea of alternative biochemistries for life is common in science fiction,” said Carl Pilcher, director of the NASA Astrobiology Institute at the agency’s Ames Research Center in Moffett Field, Calif. “Until now a life form using arsenic as a building block was only theoretical, but now we know such life exists in Mono Lake.”
The research team included scientists from the U.S. Geological Survey, Arizona State University in Tempe, Ariz., Lawrence Livermore National Laboratory in Livermore, Calif., Duquesne University in Pittsburgh and the Stanford Synchrotron Radiation Lightsource in Menlo Park.
NASA’s Astrobiology Program in Washington contributed funding for the research through its Exobiology and Evolutionary Biology program and the NASA Astrobiology Institute. NASA’s Astrobiology Program supports research into the origin, evolution, distribution and future of life on Earth.
For more information about the finding and a complete list of researchers, visit: